A Level Mechanics Practice Test 3: Gravitational Fields

Instructions:

Answer all questions. Show your working clearly.
Calculators may be used unless stated otherwise.

Draw diagrams where appropriate to illustrate your solutions.

Time allowed: 3 hours

Section A: Advanced Gravitational Force Analysis [30 marks]

Question 1 [18 marks] Three point masses are arranged in a straight line: mass A (400 kg) at position x = 0, mass B (600 kg) at x = 4.0 m, and mass C (800 kg) at x = 10.0 m.

- (a) Calculate the gravitational force on mass B due to mass A. [3 marks]
- (b) Calculate the gravitational force on mass B due to mass C. [3 marks]
- (c) Find the net gravitational force on mass B and state its direction. [4 marks]
- (d) Calculate the gravitational field strength at position x = 2.0 m due to all three masses. [8 marks]

Question 12 [12 marks] A binary star system consists of two stars with masses 3.2×10^3 kg and 1.8×10^3 kg separated by 2.4×10^{11} m.

- (a) Calculate the gravitational force between the two stars. [4 marks]
- (b) Find the position of the center of mass of the system, measured from the more massive star. [4 marks]
- (c) Calculate the gravitational field strength at the center of mass due to both stars. [4 marks]

Section B: Gravitational Fields and Potential [40 marks]

Question 2 [20 marks] Jupiter has a mass of 1.90×10^2 kg and a radius of 7.15×10 m.

- (a) Calculate the gravitational field strength on Jupiter's surface. [4 marks]
- (b) Find the gravitational potential on Jupiter's surface. [4 marks]
- (c) Calculate the gravitational field strength at a distance of 2.0 × 10 m from Jupiter's center. [4 marks]
- (d) Determine the gravitational potential at this distance. [3 marks]
- (e) Calculate the potential difference between Jupiter's surface and the point at 2.0×10 m. [3 marks]

(f) A probe of mass 1500 kg moves from Jupiter's surface to this distance. Calculate the change in its potential energy. [2 marks]

Question 3 [20 marks]

- (a) Explain the relationship between gravitational field strength and gravitational potential. Include the mathematical relationship. [4 marks]
- (b) Show that the gravitational field strength inside a uniform spherical shell of mass M and radius R is zero at all points. [6 marks]
- (c) For a uniform solid sphere of mass M and radius R, derive an expression for the gravitational field strength at distance r from the center when r; R. [6 marks]
- (d) Sketch a graph showing how gravitational field strength varies with distance from the center of a uniform solid sphere, from r = 0 to r = 3R. [4 marks]

Section C: Orbital Dynamics and Energy [45 marks]

Question 4 [25 marks] A satellite is initially in a circular orbit at height 300 km above Earth's surface. It is then transferred to a higher circular orbit at height 800 km.

- (a) Calculate the orbital velocity in the initial orbit. [4 marks]
- (b) Find the orbital period in the initial orbit. [4 marks]
- (c) Calculate the orbital velocity in the final orbit. [4 marks]
- (d) Determine the orbital period in the final orbit. [4 marks]
- (e) For a satellite of mass 2500 kg, calculate the change in:
 - (i) Kinetic energy. [3 marks]
 - (ii) Potential energy. [3 marks]
 - (iii) Total mechanical energy. [3 marks]

Question 5 [20 marks]

- (a) For a satellite in circular orbit, derive the relationship between total energy E, kinetic energy KE, and potential energy PE. [6 marks]
- (b) Show that for circular orbits, the total energy can be written as E = -GMm/(2r). [4 marks]
- (c) A satellite orbits Earth with total energy -2.5×10^{1} J. Calculate:
 - (i) The orbital radius. [4 marks]
 - (ii) The orbital velocity. [3 marks]
 - (iii) The orbital period. [3 marks]

Section D: Planetary Motion and Kepler's Laws [35 marks]

Question 6 [20 marks] Saturn orbits the Sun at an average distance of 1.43×10^{12} m with a period of 29.5 years.

- (a) Use Saturn's orbital data to calculate the mass of the Sun. [6 marks]
- (b) Calculate Saturn's orbital velocity. [4 marks]

- (c) Neptune orbits at 4.50×10^{12} m from the Sun. Use Kepler's third law to predict Neptune's orbital period in years. [5 marks]
- (d) Calculate Neptune's orbital velocity and compare it with Saturn's. [5 marks]

Question 7 [15 marks] Europa, one of Jupiter's moons, orbits at a distance of 6.71×10 m from Jupiter's center with a period of 3.55 days.

- (a) Calculate Europa's orbital velocity. [4 marks]
- (b) Use Europa's orbital data to determine Jupiter's mass. [5 marks]
- (c) Another moon, Ganymede, orbits Jupiter with a period of 7.15 days. Calculate Ganymede's orbital distance from Jupiter. [6 marks]

Section E: Escape Velocity and Interplanetary Transfer [30 marks]

Question 8 [18 marks]

- (a) Starting from first principles and using energy conservation, derive the expression for escape velocity from a planet's surface. [6 marks]
- (b) Calculate the escape velocities from:
 - (i) Venus (mass 4.87×10^2 kg, radius 6.05×10 m). [3 marks]
 - (ii) Jupiter (mass 1.90×10^2 kg, radius 7.15×10 m). [3 marks]
- (c) A spacecraft is launched from Earth with velocity 15.0 km/s. Will it escape the solar system? Justify your answer by calculating the velocity needed to escape the Sun's gravitational influence from Earth's orbit. [6 marks]

Question 9 [12 marks] A space probe is launched from Earth's surface with initial velocity 8.0 km/s vertically upward.

- (a) Use energy conservation to calculate the maximum height reached by the probe. [6 marks]
- (b) Calculate the probe's velocity when it reaches an altitude of 3000 km. [4 marks]
- (c) Determine the time taken to reach maximum height. [2 marks]

Section F: Advanced Applications and Field Superposition [40 marks]

Question 10 [25 marks] The Lagrange points are positions in space where the gravitational forces of two large masses balance. Consider the Earth-Sun system where the Sun has mass 1.99×10^3 kg and Earth has mass 5.97×10^2 kg, separated by 1.50×10^{11} m.

- (a) The L1 Lagrange point lies on the line between Earth and Sun, closer to Earth. At this point, a satellite experiences zero net gravitational force from Earth and Sun. If the satellite is at distance d from Earth's center, write the equation for force balance. [4 marks]
- (b) Solve this equation to find the approximate distance from Earth to the L1 point. (Hint: assume d ;; Earth-Sun distance for simplification) [8 marks]
- (c) Calculate the gravitational potential at the L1 point due to both Earth and Sun. [6 marks]
- (d) Determine the energy required to move a 1000 kg satellite from Earth's surface to the L1 point. [7 marks]

Question 11 [15 marks] A space elevator is a theoretical structure extending from Earth's surface to beyond geostationary orbit.

- (a) Calculate the height of geostationary orbit above Earth's surface. [4 marks]
- (b) At geostationary altitude, calculate:
 - (i) The gravitational field strength. [3 marks]
 - (ii) The centripetal acceleration for an object moving with Earth's rotation. [3 marks]
- (c) Explain why the space elevator must extend beyond geostationary orbit to remain stable. [3 marks]
- (d) Calculate the energy saving per kilogram compared to rocket launch for placing payloads in geostationary orbit. [2 marks]

Physics Data and Formulae

Gravitational Force and Field:

Newton's Law: $F = \frac{Gm_1m_2}{r^2}$ Field strength: $g = \frac{F}{m} = \frac{GM}{r^2}$ Field inside uniform sphere: $g = \frac{GMr}{R^3}$ (for r < R) Field-potential relation: $g = -\frac{dV}{dr}$

Gravitational Potential and Energy:

Potential: $V = -\frac{GM}{r}$ Potential energy: $U = mV = -\frac{GMm}{r}$ Work done: $W = m\Delta V = \Delta U$

Orbital Motion:

Circular orbital velocity: $v = \sqrt{\frac{GM}{r}}$ Orbital period: $T = 2\pi\sqrt{\frac{r^3}{GM}}$ Kepler's Third Law: $\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$ Escape velocity: $v_e = \sqrt{\frac{2GM}{r}}$

Energy in Circular Orbits:

Kinetic energy: $E_k = \frac{1}{2}mv^2 = \frac{GMm}{2r}$ Potential energy: $E_p = -\frac{GMm}{r}$ Total energy: $E = E_k + E_p = -\frac{GMm}{2r}$

Circular Motion:

Centripetal force: $F_c = \frac{mv^2}{r} = m\omega^2 r$ Centripetal acceleration: $a_c = \frac{v^2}{r} = \omega^2 r$ Angular velocity: $\omega = \frac{2\pi}{T} = \frac{v}{r}$

Physical Constants:

Gravitational constant: $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ Earth's mass: $M_E = 5.97 \times 10^{24} \text{ kg}$ Earth's radius: $R_E = 6.37 \times 10^6 \text{ m}$ Sun's mass: $M_S = 1.99 \times 10^{30} \text{ kg}$ Earth-Sun distance: $1.50 \times 10^{11} \text{ m}$ Standard gravity: $g = 9.81 \text{ m/s}^2$

END OF TEST

Total marks: 220

Grade boundaries: A* 198, A 176, B 154, C 132, D 110, E 88

For more resources and practice materials, visit: stepupmaths.co.uk