A Level Statistics Practice Test 4: Hypothesis Testing

Instructions:

Answer all questions. Show your working clearly.
Calculators may be used unless stated otherwise.

Draw diagrams where appropriate to illustrate your solutions.

Time allowed: 3 hours

Section A: Regression Analysis and Linear Models [25 marks]

- 1. [12 marks] Define and explain regression hypothesis testing:
 - (a) Explain the purpose of testing regression coefficients for significance.
 - (b) Write the null and alternative hypotheses for testing whether a slope coefficient equals zero.
 - (c) Define the standard error of a regression coefficient and its role in hypothesis testing.
 - (d) Explain what R² represents and how it relates to the significance of the regression model.
 - (e) Describe the F-test for overall regression significance.
 - (f) Explain the assumptions required for valid regression hypothesis tests.
 - 2. [8 marks] Explain confidence and prediction intervals in regression:
 - (a) Distinguish between confidence intervals for the mean response and prediction intervals.
 - (b) Explain why prediction intervals are wider than confidence intervals.
 - (c) Describe how to test whether the regression line passes through a specific point.
 - (d) Explain the concept of leverage and influential observations in regression.
 - 3. [5 marks] Analyze regression assumptions:
 - (a) List the key assumptions for linear regression.
 - (b) Explain how to check the assumption of constant variance (homoscedasticity).
 - (c) Describe methods for detecting non-linearity in the relationship.

Section B: Time Series and Goodness of Fit Testing [30 marks]

- 4. [15 marks] Testing for randomness and independence:
 - (a) Define the runs test and explain its purpose in testing randomness.
 - (b) Explain autocorrelation and its implications for time series analysis.
 - (c) Describe the Durbin-Watson test for detecting serial correlation.
 - (d) Explain how to test for trend in time series data.
 - (e) Define stationarity and explain tests for stationarity.
 - (f) Describe seasonal decomposition and testing for seasonal effects.
- 5. [15 marks] A quality control manager monitors daily production defects over 20 days: Day: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 Defects: 3, 5, 2, 4, 6, 3, 7, 4, 5, 8, 6, 9, 7, 8, 10, 9, 11, 8, 10, 12
 - (a) Plot the time series and comment on any apparent patterns.
 - (b) Test for the presence of a linear trend using correlation analysis.
 - (c) Calculate the correlation coefficient between defects and day number.
 - (d) Test whether this correlation is significantly different from zero at = 0.05.
 - (e) Perform a runs test to check for randomness in the sequence.
 - (f) Calculate the expected number of runs and the test statistic.
 - (g) Make conclusions about the randomness and trend in the defect data.
 - (h) Suggest appropriate control measures based on your findings.
 - (i) Calculate a prediction interval for day 21 defects assuming linear trend.

Section C: Multi-Factor and Complex Testing Scenarios [35 marks]

6. [18 marks] A pharmaceutical study examines the effectiveness of a new drug across different age groups and genders:

	Age Group		
Gender	Young (18-35)	Middle (36-55)	Senior (56+)
Male	85% (n=40)	78% (n=35)	72% (n=30)
Female	88% (n=45)	82% (n=38)	75% (n=32)

Success rates and sample sizes are shown in parentheses.

- (a) Test whether success rates differ significantly across age groups (ignoring gender).
- (b) Test whether success rates differ significantly between genders (ignoring age).
- (c) Perform a two-way ANOVA-style analysis to test for age and gender effects.
- (d) Test for interaction between age and gender effects.
- (e) Calculate effect sizes for age and gender differences.
- (f) Determine which age groups differ significantly using pairwise comparisons.

- (g) Apply appropriate multiple testing corrections.
- (h) Calculate confidence intervals for success rates in each subgroup.
- (i) Make recommendations about drug effectiveness across different populations.
- 7. [17 marks] A marketing research study examines customer satisfaction across four service centers using multiple measures:

Quantitative Ratings (1-10 scale): Center A: 7.2, 8.1, 6.8, 7.9, 7.5, 8.3, 7.1, 7.8, 8.0, 7.4 Center B: 8.5, 8.9, 8.2, 8.7, 8.1, 8.8, 8.4, 8.6, 8.3, 8.0 Center C: 6.5, 7.2, 6.8, 7.0, 6.9, 7.1, 6.7, 6.6, 7.3, 6.8 Center D: 7.8, 8.2, 7.6, 8.1, 7.9, 8.4, 7.7, 8.0, 7.5, 8.3

Categorical Satisfaction Levels:

Center	Satisfied	Neutral	Dissatisfied
A	65	25	10
В	85	12	3
C	45	35	20
D	75	20	5

- (a) Compare the mean quantitative ratings across centers using ANOVA.
- (b) Test the assumptions of normality and equal variances for the ANOVA.
- (c) Perform post-hoc pairwise comparisons between centers.
- (d) Test for independence between center and satisfaction level using chi-squared.
- (e) Calculate standardized residuals to identify which centers deviate most from expected.
- (f) Compare the conclusions from quantitative versus categorical analysis.
- (g) Calculate effect sizes for both types of analysis.
- (h) Rank the centers by performance using both measures.
- (i) Discuss any discrepancies between the two approaches and suggest explanations.

Answer Space

Use this space for your working and answers.

Formulae and Key Concepts

Regression Tests:

Slope test: $t = \frac{b_1 - \beta_1}{SE(b_1)}$ with df = n-2 Overall F-test: $F = \frac{MSR}{MSE} = \frac{R^2/(k)}{(1-R^2)/(n-k-1)}$ where k = number of predictors

Standard error:
$$SE(b_1) = \frac{s}{\sqrt{\sum (x_i - \bar{x})^2}}$$

Confidence and Prediction Intervals:

Confidence interval for mean: $\hat{y} \pm t_{\alpha/2} \cdot SE(\hat{y})$ Prediction interval: $\hat{y} \pm t_{\alpha/2} \cdot SE(pred)$ where $SE(pred) > SE(\hat{y})$ due to additional uncertainty

Runs Test:

Expected runs:
$$E(R) = \frac{2n_1n_2}{n_1+n_2} + 1$$

Variance: $Var(R) = \frac{2n_1n_2(2n_1n_2-n_1-n_2)}{(n_1+n_2)^2(n_1+n_2-1)}$
Test statistic: $z = \frac{R-E(R)}{\sqrt{Var(R)}}$

Trend Testing: Correlation with time:
$$r = \frac{\sum (t_i - \bar{t})(y_i - \bar{y})}{\sqrt{\sum (t_i - \bar{t})^2 \sum (y_i - \bar{y})^2}}$$

Test statistic: $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$

Two-Way Analysis:

Main effects and interaction testing Cell means model: $y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk}$ Test for interaction: F-test comparing models with/without interaction

Multiple Comparisons:

Bonferroni: $\alpha_{adj} = \frac{\alpha}{m}$ Tukey HSD for pairwise comparisons in ANOVA False Discovery Rate (FDR) procedures

Effect Sizes:

Regression: \mathbb{R}^2 (proportion of variance explained) ANOVA: $\eta^2 = \frac{SS_{effect}}{SS_{total}}$ Cohen's d for mean differences Cramer's V for categorical associations: $V = \sqrt{\frac{\chi^2}{n \cdot min(r-1,c-1)}}$

Chi-Squared for Independence:

Test statistic:
$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Expected frequency: $E_{ij} = \frac{R_i \times C_j}{n}$
Standardized residual: $\frac{O_{ij} - E_{ij}}{\sqrt{E_{ij}(1 - p_{i.})(1 - p_{.j})}}$

Model Assumptions:

Regression: Linearity, independence, normality, constant variance ANOVA: Independence, normality, equal variances Time series: Stationarity, independence of residuals

END OF TEST

Total marks: 90

For more resources and practice materials, visit:

 ${\bf stepup maths. co. uk}$