A Level Pure Mathematics Practice Test 6: Vectors

Instructions:

Answer all questions. Show your working clearly. Calculators may be used unless stated otherwise.

Time allowed: 2 hours

Section A: Vector Basics and Notation

1. Given vectors
$$\mathbf{w} = \begin{pmatrix} 8 \\ -5 \\ 3 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} -4 \\ 2 \\ 6 \end{pmatrix}$, calculate:

(a)
$$\mathbf{w} + \mathbf{x}$$

(b)
$$\mathbf{w} - \mathbf{x}$$

(c)
$$4w + 3x$$

(d)
$$6\mathbf{w} - 2\mathbf{x}$$

(e)
$$|\mathbf{w}|$$
 and $|\mathbf{x}|$

(f) A unit vector in the direction of
$$\mathbf{x}$$

2. Express these vectors in component form:

(a)
$$\overrightarrow{AB}$$
 where $A(6,3,-1)$ and $B(2,7,4)$

(b)
$$\overrightarrow{ST}$$
 where $S(-3,1,5)$ and $T(4,-2,3)$

(c) The position vector of point
$$Z$$
 if $\overrightarrow{OZ} = 6\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$

(d)
$$\overrightarrow{BA}$$
 where $A(4, -3, 2)$ and $B(7, 1, -4)$

3. Given
$$\mathbf{g} = 6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$$
 and $\mathbf{h} = 4\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$:

(a) Find
$$|\mathbf{g}|$$
 and $|\mathbf{h}|$

(b) Calculate
$$\mathbf{g} + \mathbf{h}$$
 and $\mathbf{g} - \mathbf{h}$

(c) Find scalars
$$m$$
 and n such that $m\mathbf{g} + n\mathbf{h} = \begin{pmatrix} 5 \\ -9 \\ 14 \end{pmatrix}$

(d) Determine if
$$\mathbf{g}$$
 and \mathbf{h} are parallel

4. Points
$$R$$
, S , and T have position vectors $\mathbf{r} = \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix}$, $\mathbf{s} = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$, and $\mathbf{t} = \begin{pmatrix} 5 \\ 3 \\ 7 \end{pmatrix}$.

1

(a) Find vectors
$$\overrightarrow{RS}$$
 and \overrightarrow{RT}

(b) Calculate the lengths
$$|RS|$$
 and $|RT|$

- (c) Find the position vector of the midpoint of ST
- (d) Determine if triangle RST is isosceles
- 5. Find the values of p for which these vectors are perpendicular:

(a)
$$\mathbf{u} = \begin{pmatrix} 5 \\ p \\ 3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} p \\ 2 \\ -5 \end{pmatrix}$

(b)
$$\mathbf{a} = \begin{pmatrix} 3 \\ 4p \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ -1 \\ p \end{pmatrix}$

(c)
$$\mathbf{c} = p\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$$
 and $\mathbf{d} = 5\mathbf{i} + p\mathbf{j} + 4\mathbf{k}$

Section B: Dot Product (Scalar Product)

6. Calculate the dot product of these vectors:

(a)
$$\mathbf{e} = \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix}$$
 and $\mathbf{f} = \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$

(b)
$$\mathbf{g} = 6\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$$
 and $\mathbf{h} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$

(c)
$$\mathbf{i} = \begin{pmatrix} 5 \\ -2 \\ 4 \end{pmatrix}$$
 and $\mathbf{j} = \begin{pmatrix} 3 \\ 7 \\ -2 \end{pmatrix}$

(d)
$$\mathbf{k} = 5\mathbf{i} + 4\mathbf{j}$$
 and $\mathbf{l} = 3\mathbf{i} - 6\mathbf{j} + 2\mathbf{k}$

7. Find the angle between these pairs of vectors:

(a)
$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{n} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

(b)
$$\mathbf{o} = \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix}$$
 and $\mathbf{p} = \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix}$

(c)
$$\mathbf{q} = 4\mathbf{i} + 6\mathbf{j}$$
 and $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$

(d)
$$\mathbf{s} = \begin{pmatrix} 5 \\ -3 \\ 4 \end{pmatrix}$$
 and $\mathbf{t} = \begin{pmatrix} 2 \\ 6 \\ 1 \end{pmatrix}$

8. Use the dot product to verify these properties:

- (a) $\mathbf{m} \cdot \mathbf{n} = \mathbf{n} \cdot \mathbf{m}$ (commutative)
- (b) $\mathbf{m} \cdot (\mathbf{n} + \mathbf{o}) = \mathbf{m} \cdot \mathbf{n} + \mathbf{m} \cdot \mathbf{o}$ (distributive)
- (c) $(k\mathbf{m}) \cdot \mathbf{n} = k(\mathbf{m} \cdot \mathbf{n})$ for scalar k
- (d) $\mathbf{m} \cdot \mathbf{m} = |\mathbf{m}|^2$

9. Given vectors
$$\mathbf{p} = \begin{pmatrix} 6 \\ 5 \\ -2 \end{pmatrix}$$
, $\mathbf{q} = \begin{pmatrix} 5 \\ -6 \\ 2 \end{pmatrix}$, and $\mathbf{r} = \begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix}$:

- (a) Show that \mathbf{p} and \mathbf{q} are perpendicular
 - (b) Find the component of \mathbf{r} in the direction of \mathbf{p}
 - (c) Calculate $|\mathbf{p} + \mathbf{q} + \mathbf{r}|$

- (d) Find the angle between $\mathbf{p} + \mathbf{q}$ and \mathbf{r}
- 10. A triangle has vertices at J(6,3,2), K(4,7,1), and L(5,4,6).
 - (a) Find the vectors \overrightarrow{JK} and \overrightarrow{JL}
 - (b) Calculate the angle $\angle KJL$
 - (c) Find the area of triangle JKL
 - (d) Determine if the triangle is right-angled

Section C: Cross Product (Vector Product)

11. Calculate the cross product of these vectors:

(a)
$$\mathbf{s} = \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix}$$
 and $\mathbf{t} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$

(b)
$$\mathbf{u} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$$
 and $\mathbf{v} = 5\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$

(c)
$$\mathbf{w} = \begin{pmatrix} 4 \\ -3 \\ 5 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$

- (d) $\mathbf{y} = 6\mathbf{i} + 4\mathbf{j}$ and $\mathbf{z} = 2\mathbf{i} + 5\mathbf{k}$
- 12. Verify these properties of the cross product:
 - (a) $\mathbf{r} \times \mathbf{s} = -(\mathbf{s} \times \mathbf{r})$ (anti-commutative)
 - (b) $\mathbf{r} \times (\mathbf{s} + \mathbf{t}) = \mathbf{r} \times \mathbf{s} + \mathbf{r} \times \mathbf{t}$ (distributive)
 - (c) $\mathbf{r} \times \mathbf{r} = \mathbf{0}$
 - (d) $|\mathbf{r} \times \mathbf{s}|^2 = |\mathbf{r}|^2 |\mathbf{s}|^2 (\mathbf{r} \cdot \mathbf{s})^2$
- 13. Find the area of the parallelogram spanned by:

(a)
$$\mathbf{a} = \begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$

- (b) $\mathbf{c} = 4\mathbf{i} + 5\mathbf{j} 3\mathbf{k}$ and $\mathbf{d} = 3\mathbf{i} 2\mathbf{j} + 6\mathbf{k}$
- (c) Vectors from origin to points (3, 6, 2) and (5, 2, 4)
- (d) \overrightarrow{MN} and \overrightarrow{MO} where M(6,2,4), N(3,5,2), O(5,3,7)

14. Given
$$\mathbf{u} = \begin{pmatrix} 7 \\ -2 \\ 4 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 3 \\ 6 \\ -5 \end{pmatrix}$:

- (a) Calculate $\mathbf{u} \times \mathbf{v}$
- (b) Verify that $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v}
- (c) Find a unit vector perpendicular to both \mathbf{u} and \mathbf{v}
- (d) Calculate the area of triangle with sides \mathbf{u} and \mathbf{v}
- 15. Use the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ to find:

(a) The volume of parallelepiped with edges
$$\mathbf{u} = \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 4 \\ 3 \\ 6 \end{pmatrix}$

- (b) Whether points P(6,2,4), Q(3,7,2), R(5,4,3), S(4,6,5) are coplanar
- (c) The volume of tetrahedron with vertices at (0,0,0), (6,2,4), (3,5,2), (4,3,6)

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepup maths.co.uk $\,$