A Level Pure Mathematics Practice Test 5: Proof

Instructions:

Answer all questions. Show your working clearly. Calculators may NOT be used in this test.

Time allowed: 2 hours

Section A: Direct Proof

- 1. Prove that the sum of an even integer and an odd integer is always odd.
- 2. Prove that if n is an even integer, then $n^2 + n$ is even.
- 3. Prove that the difference of the squares of two consecutive odd integers is always divisible by 8.
- 4. Prove that for any integer n, the expression 3n(n+1) is always even.
- 5. Given that p is rational and q is rational with $q \neq 0$, prove that p q is rational.
- 6. Prove that if $a \ge 0$, $b \ge 0$, and $c \ge 0$, then $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$ (AM-GM inequality for three terms).
- 7. Prove that for any real numbers x and y, $x^2 + y^2 \ge 2xy$ with equality if and only if x = y.
- 8. Prove that in any triangle with sides a, b, and c, if $a \le b \le c,$ then c < a + b.
- 9. Let $r(x) = x^{11} 2x^9 + 4x^7 x^5 + 3x^3 5x$. Prove that r is an odd function.
- 10. Prove that the function s(x) = -4x + 1 is strictly decreasing on \mathbb{R} .

Section B: Proof by Contradiction

- 11. Prove that $\sqrt{17}$ is irrational.
- 12. Prove that there is no largest negative integer.
- 13. Prove that $\sqrt{12}$ is irrational.
- 14. Prove that if n^3 is divisible by 7, then n is divisible by 7.
- 15. Prove that there is no rational number whose cube is 2.
- 16. Prove that if a and b are integers with $2a^2 + b^2 = 3$, then a = 0 and $b = \pm \sqrt{3}$, which is impossible for integer b.
- 17. Prove that $\log_3 7$ is irrational.
- 18. Prove that the equation $3x^2 + 2x + 5 = 0$ has no real solutions.
- 19. Prove that the equation $x^2 11y^2 = 6$ has no integer solutions.
- 20. Prove that if n is an integer and $n^2 + 1$ is even, then n is odd.

Section C: Mathematical Induction - Sequences and Series

- 21. Prove by induction that $8+16+24+\ldots+8n=4n(n+1)$ for all positive integers n.
- 22. Prove by induction that $3^2 + 6^2 + 9^2 + \ldots + (3n)^2 = \frac{9n(n+1)(2n+1)}{6}$ for all positive integers n.
- 23. Prove by induction that $6 + 11 + 16 + \ldots + (5n + 1) = \frac{n(5n+7)}{2}$ for all positive integers n.
- 24. Prove by induction that $9 + 18 + 27 + \ldots + 9n = \frac{9n(n+1)}{2}$ for all positive integers n.
- 25. Prove by induction that $2+7+12+\ldots+(5n-3)=\frac{n(5n-1)}{2}$ for all positive integers n.
- 26. Let $t_1 = 4$ and $t_{n+1} = 3t_n 2$ for $n \ge 1$. Prove by induction that $t_n = 3^n + 1$ for all positive integers n.
- 27. Prove by induction that $\sum_{r=1}^{n} r \cdot 6^r = \frac{(5n-1)6^{n+1}+6}{25}$ for all positive integers n.
- 28. Prove by induction that $\sum_{r=1}^{n} \frac{1}{(3r-2)(3r+1)} = \frac{n}{3n+1}$ for all positive integers n.
- 29. The sequence U_n is defined by $U_1=2$, $U_2=5$, and $U_{n+1}=U_n+2U_{n-1}$ for $n\geq 2$. Prove by induction that $U_n=2^n+(-1)^n$ for all $n\geq 1$.
- 30. Prove by induction that $\sum_{r=1}^{n} r^2(r+3) = \frac{n(n+1)(n+2)(3n+11)}{12}$ for all positive integers n.

Section D: Mathematical Induction - Inequalities

- 31. Prove by induction that $7^n \ge 6n + 1$ for all non-negative integers n.
- 32. Prove by induction that $5^n \ge 4n^2$ for all integers $n \ge 2$.
- 33. Prove by induction that $n! \ge 6^{n-5}$ for all integers $n \ge 7$.
- 34. Prove by induction that $(1+x)^n \ge 1 + nx + \frac{n(n-1)(n-2)}{6}x^3$ for all real $x \ge 0$ and all integers $n \ge 3$.
- 35. Prove by induction that $\frac{1}{5^2} + \frac{1}{6^2} + \ldots + \frac{1}{n^2} < \frac{1}{4} \frac{1}{4n}$ for all integers $n \ge 5$.
- 36. Prove by induction that $\frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} + \ldots + \frac{1}{\sqrt{n}} \ge 2(\sqrt{n} 2)$ for all integers $n \ge 5$.
- 37. Prove by induction that $1 + \frac{1}{5^2} + \frac{1}{6^2} + \ldots + \frac{1}{n^2} < \frac{3}{2}$ for all integers $n \ge 5$.
- 38. Prove by induction that $6^n \ge 3n^3$ for all integers $n \ge 3$.
- 39. Prove by induction that $\left(1 + \frac{1}{5n}\right)^n < \frac{4}{3}$ for all positive integers n.
- 40. Prove by induction that for $n \ge 5$, $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \ge \frac{3}{5}$.

Section E: Mathematical Induction - Divisibility

- 41. Prove by induction that $n^3 + 23n$ is divisible by 6 for all positive integers n.
- 42. Prove by induction that $8^n 1$ is divisible by 7 for all positive integers n.
- 43. Prove by induction that $10^n 1$ is divisible by 9 for all positive integers n.
- 44. Prove by induction that $4n^3 + 6n^2 + 2n$ is divisible by 12 for all positive integers n.
- 45. Prove by induction that $12^n 1$ is divisible by 11 for all positive integers n.
- 46. Prove by induction that $6^{2n+1} + 3^{n+2}$ is divisible by 11 for all non-negative integers n.

- 47. Prove by induction that $14^n 7^n$ is divisible by 7 for all positive integers n.
- 48. Prove by induction that $9^{2n} 1$ is divisible by 80 for all positive integers n.
- 49. Prove by induction that $n^{17} n$ is divisible by 17 for all positive integers n.
- 50. Prove by induction that $17^n + 18^n$ is divisible by 35 for all odd positive integers n.

Section F: Deduction in Algebraic Manipulation

- 51. Given that m + n = 9 and mn = 20, find the value of $m^2 + n^2$.
- 52. If u + v + w = 3 and uv + vw + wu = -2, find the value of $u^2 + v^2 + w^2$.
- 53. Given that α and β are roots of $x^2 + x 3 = 0$, prove that:
 - (a) $\alpha + \beta = -1$
 - (b) $\alpha\beta = -3$
 - (c) $\alpha^3 + \beta^3 = 10$
- 54. If $w + \frac{1}{w} = 3$, find expressions for:
 - (a) $w^2 + \frac{1}{w^2}$
 - (b) $w^3 + \frac{1}{w^3}$
 - (c) $w^4 + \frac{1}{w^4}$
- 55. Prove that if p + q + r = 0, then $(p + q + r)^2 = p^2 + q^2 + r^2 + 2(pq + qr + rp) = 0$.
- 56. Given that x, y, z are in geometric progression, prove that x^2 , y^2 , z^2 are also in geometric progression.
- 57. If $\cos \alpha + \cos \beta = 1$ and $\sin \alpha + \sin \beta = 1$, prove that $\cos(\alpha \beta) = \frac{1}{2}$.
- 58. Prove that $(a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2 = 2(a^2+b^2+c^2) 2ab 2bc 2ca$.
- 59. Given that $\log p$, $\log q$, $\log r$ are in arithmetic progression, prove that $q^2 = pr$.
- 60. If a, b, c are in harmonic progression, prove that $\frac{a+c}{2} \ge \frac{2ac}{a+c} = b$ (harmonic mean inequality).

Section G: Deduction in Geometric Reasoning

- 61. In triangle LMN, prove that the sum of any two angles is less than 180 plus the third angle.
- 62. Prove that if a line bisects two sides of a triangle, then it is parallel to the third side and its length is half that of the third side.
- 63. Prove that if two chords of a circle are equal, then they are equidistant from the center.
- 64. In triangle ABC, let H be the orthocenter. Prove that $\angle BHC = 180 \angle A$ when A is acute.
- 65. Prove that if both pairs of opposite sides of a quadrilateral are equal, then it is a parallelogram.
- 66. In a circle, prove that the perpendicular bisector of any chord passes through the center.
- 67. Prove that if two circles intersect at two points, the line joining their centers is the perpendicular bisector of the common chord.
- 68. In triangle STU, prove that $\frac{s}{\sin S} = \frac{t}{\sin T} = \frac{u}{\sin U} = 2R$ where R is the circumradius.
- 69. Prove that the altitudes of a triangle are concurrent (meet at the orthocenter).
- 70. Prove that in a rhombus, the diagonals bisect each other at right angles.

Section H: Advanced Proof Techniques

- 71. Prove that the irrational numbers are dense in the real numbers.
- 72. Prove that if $k(x) = \frac{4x-1}{3x+2}$ where $x \neq -\frac{2}{3}$, then k has an inverse function on its domain.
- 73. Prove that the set of rational numbers between 0 and 1 is countably infinite.
- 74. Use the pigeonhole principle to prove that in any group of 10 people, at least two have birthdays in the same month.
- 75. Prove that $5 + \sqrt{11}$ is irrational.
- 76. Prove that if p is an odd prime, then 8 divides $p^2 1$.
- 77. Prove that the square root of any non-perfect-square positive integer is irrational.
- 78. Use strong induction to prove that the Fibonacci sequence F_n satisfies $F_n < 2^n$ for all $n \ge 1$.
- 79. Prove that if b_1, b_2, \ldots, b_n are positive real numbers, then:

$$\left(\frac{b_1 + b_2 + \ldots + b_n}{n}\right)^2 \ge \frac{b_1^2 + b_2^2 + \ldots + b_n^2}{n}$$

(Cauchy-Schwarz inequality special case)

80. Prove or disprove: For all positive integers n, $6^n - 1$ is divisible by 5.

Section I: Proof Writing and Communication

- 81. Write a complete proof of Heron's formula: For a triangle with sides a, b, c and semiperimeter $s = \frac{a+b+c}{2}$, the area is $A = \sqrt{s(s-a)(s-b)(s-c)}$.
- 82. Prove that the equation $x^5 + y^5 = z^2$ has no positive integer solutions when gcd(x,y) = 1.
- 83. Let $Q_n = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n+1)$. Prove that $Q_n = \frac{n(n+1)(n+2)}{3}$ and deduce that Q_n is always an integer.
- 84. Prove Stewart's theorem: In triangle ABC with cevian AD where D lies on BC with BD = m and DC = n, we have:

$$b^2m + c^2n = a(d^2 + mn)$$

where a = BC, b = AC, c = AB, and d = AD.

- 85. Consider the sequence defined by $g_1 = 1$, $g_2 = 4$, and $g_{n+2} = g_{n+1} + g_n$ for $n \ge 1$. Prove that $gcd(g_n, g_{n+1}) = 1$ for all $n \ge 1$.
- 86. Prove that for any positive integer n, the number $9^{2n} 4^{n+1}$ is divisible by 17.
- 87. Let $\phi: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{-3\}$ be defined by $\phi(x) = \frac{-3x+2}{x-1}$. Prove that ϕ is bijective and find ϕ^{-1} .
- 88. Prove the Fundamental Theorem of Arithmetic: Every integer greater than 1 is either prime or can be expressed uniquely as a product of prime factors (up to order).
- 89. Prove that $\sqrt[4]{3}$ is irrational by showing that if $\sqrt[4]{3} = \frac{p}{q}$ in lowest terms, then both p and q must be divisible by 3.
- 90. Write a proof showing that there are infinitely many primes of the form 6k + 5 where k is a non-negative integer.

Answer Space

Use this space for your working and answers.

END OF TEST

Total marks: 150

For more resources and practice materials, visit: stepupmaths.co.uk